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Abstract. Boundary equations for the relativistic string with masses at ends are formulated
in terms of geometrical invariants of world trajectories of masses at the string ends. In the
three-dimensional Minkowski spaceE1

2, there are two invariants of that sort, the curvature
K and torsionκ. Curvatures of trajectories of the string massive ends are always constant,
Ki = γ /mi(i = 1, 2, ), whereas torsionsκi(τ ) are the functions ofτ and obey a system
of differential equations of second order with deviating arguments. For periodic torsions
κi(τ + nl) = κ(τ), wherel is the string length in the plane of parametersτ andσ(06 σ 6 l),
these equations result in constant of motion.

Introduction

The relativistic string with point masses at ends is the dynamic basis of the string model of
hadrons since there is a direct analogy between an open string with masses at its ends and
a quark–antiquark pair connected by a tube of the gluon field in quantum chromodynamics
[1]. Difficulties of the hadron string model are due to the nonlinear character of boundary
conditions, and even at the classical level, the investigation of this system becomes a
complicated mathematical problem whose general solution is not yet derived. Therefore, it
seems of interest to consider a new mathematical formulation of that problem which would
promote the investigation of its dynamics.

The action functional for a relativistic string with masses at its ends results in equations
of motion of the string and in boundary conditions that physically represent equations of
motion of the two masses interacting through the string. An analogy arises between that
system and classical electrodynamics with charges in which the field is described by the
Maxwell equations with charges and the dynamics of massive charges interacting with
the field is given by Lorentz equations. Wheeler and Feynman [2] considered the action
propagating at a distance with a finite velocity, they eliminated the field variables from
the equation in electrodynamics and formulated the interaction between charges in terms of
retarded and advanced propagation functions when there is no absorption and emission of
the electromagnetic field. For a system of relativistic string with masses at its ends, one can
also utilize the principle of action at a distance to enable one to find equations of motion
in terms of characteristics of the trajectories along which the masses are moving provided
the string variables are eliminated. It is clear that owing to the problem being relativistic, it
cannot be formulated within the equal-time formalism. In the simplest nonrelativistic limit
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we arrive at a system of two masses coupled by a linearly rising potential [1, 3]. In [4]
boundary equations for the relativistic string with masses at ends have been reformulated
in the three-dimensional Minkovski spaceE1

2(t, x, y) in terms of geometrical invariants of
world trajectories of the string ends, their constant curvatureK and torsionκ(τ). This pair
of invariants determine the trajectory of the string ends with masses up to its position in
the spaceE1

2 [5]
In this paper, equations for a component of the metric tensor of the world surface of the

string at its endṡx2(τ, σi) are derived from boundary equations of a string with masses at
ends; that tensor defines the torsions of boundary curves and for a massless string(mi = 0)
it equals zeroẋ2(τ, σi) = 0. It is shown that these nonlinear equations of second order,
when ẋ2(τ, σi) are periodic, possess constants of motion that in some cases allow us to
reduce the problem of solution to elliptic equations and thus to expressẋ2(τ, σi) through
elliptic functions in a rational way. In the simplest case of constantẋ2(τ, σi) = ci , we arrive
at the well known motion of string ends with masses along helixes and the corresponding
world surface of the string turns out to be a helicoid [7]. In the next paper, using some
examples with different periodsl and 2l, we will show how the obtained constants of motion
allow us to solve the problem of finding the string coordinates. Section 1 is solely a review
of previous papers [4, 6]. In section 2, the geometrical approach to boundary equations of
relativistic string with masses at ends is formulated in the three-dimensional Minkowski
spaceE1

2. Section 3 deals with derivation of the constant of motion for boundary equations
with periodic torsions of trajectories of the string ends with masses. Section 4 contains
some conclusions.

1. Equations of motion and boundary conditions

Classical equations of motion and boundary conditions for a system of two point masses
connected by the relativistic string follow from the action function for that system [4, 6]

S = −γ
∫

dτ
∫

dσ
√
(ẋx́)

2− ẋ2x́2−
2∑
i=1

mi

∫
dτ

√(
dxµ(τi, σi(τ ))

dτ

)2

. (1.1)

Here the first term is the action of a massless relativistic string;γ is the parameter of
tension of the string;mi are masses of particles at the string ends;xµ(τ, σ ) are coordinates
of the string points in aD-dimensional Minkowski space with metric(1,−1,−1, . . .);
derivatives are denoted by

ẋµ = ∂xµ(τ, σ )

∂τ
x́µ = ∂xµ(τ, σ )

∂σ
dxµ(τ, σi(τ ))

dτ
= ẋµ(τ, σi(τ ))+ x́µ(τ, σi(τ ))σ̇i(τ )

where the string endpoints with masses in the plane of parametersτ andσ are described
by functionsσi(τ ).

As in the case of a massless string,mi = 0, the action (1.1) is invariant with respect to a
nondegenerate change of parametersτ̃ = τ̃ (τ, σ ) andσ̃ = σ̃ (τ, σ ), which allows us to take
the conformally flat metric on the string surface by imposing the conditions of orthonormal
gauge

ẋ2+ x́2 = 0 ẋx́ = 0. (1.2)

The action (1.1) results in the linear equations of motion for the string coordinates [1, 4]

ẍµ(τ, σ )− x ′′µ(τ, σ ) = 0 (1.3)
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and the boundary conditions for the ends with masses

mi
d

dτ

[
ẋµ(τ, σi(τ ))+ σ̇ (τ )x́µ(τ, σi(τ ))√

ẋ2(τ, σi(τ ))(1− σi2(τ ))

]
= (−1)i+1γ [ẋµ(τ, σi(τ ))+ σ̇ (τ )x́µ(τ, σi(τ ))] (i = 1, 2). (1.4)

The general solution to equations of motion (1.3) is the vector function
xµ(τ, σ ) = 1

2[ψµ
+(τ + σ)+ ψµ

−(τ − σ)]
ẋµ = 1

2[ψ́µ
+(τ + σ)+ ψ́µ

−(τ − σ)] ẋµ = 1
2[ψ́µ
+(τ + σ)− ψ́µ

−(τ − σ)]
(1.5)

whereψ́µ
±(τ ± σ) are derivatives with respect to the arguments.

Inserting it into the gauge conditions (1.2) we obtain the equations
ψ́2
+(τ + σ) = 0 ψ́2

−(τ − σ) = 0 (1.6)

according to which the vectorśψµ
+(τ + σ) and ψ́µ

−(τ − σ) should be isotropic. For
further consideration, it is convenient to represent them as expansions over a constant
basis in theD-dimensional Minkowski spaceE1

D1
consisting of two isotropic vectorsaµ

andcµ(aµaµ = 0, cµcµ = 0, aµcµ = 1) andD − 2 orthonormal space-like vectorsbµk (r =
1, 2, 3, . . . , D − 2), bµk blµ = −δkl orthogonal to vectorsaµ andcµ(aµbkµ = 0, cµbkµ = 0)
[4, 8]. As a result, we obtain the expansion ofψ́µ

± over this basis

ψ́
µ
+(τ + σ) =

A+(τ + σ)√∑D−2
k=1 ḟ

2
k (τ + σ)

[
aµ +

D−2∑
k=1

b
µ

k fk(τ + σ)+
1

2
cµ

D−2∑
k=1

f 2
k (τ + σ)

]

ψ́
µ
−(τ − σ) =

A−(τ − σ)√∑D−2
k=1 ġ

2
k (τ − σ)

[
aµ +

D−2∑
k=1

b
µ

k gk(τ − σ)+
1

2
cµ

D−2∑
k=1

g2
k (τ − σ)

]
.

(1.7)

It can easily be verified that́ψ2
± = 0, condition (1.6) is satisfied and that

(ψ
′′µ
± ψ

′′
±µ) = ψ ′′2± (τ ± σ) = −A2

±(τ ± σ)
whereA2

±(τ±σ) are two arbitrary functions, such as the functionsfk andgk. The condition
of orthogonal gauge (1.7) does not determine the functionsA±, and consequently, there is
a possibility of fixing them by imposing further gauge conditions since expressions (1.7)
are invariant under conformal transformations of the parametersτ̃ ± σ̃ = V±(τ ± σ). We
fix them by imposing two more gauge conditions

[ẍµ(τ, σ )± ẋ ′µ(τ, σ )]2 = −A2 = constant (1.8a)
which in terms of the vector functionśψµ

± mean that the space-like vectorsψ ′′µ± (τ ± σ) are
modulo constant,

ψ ′′2± (τ ± σ) = −A2
±(τ ± σ) = −A2. (1.8b)

In this way, we have fixed the functionsA±(τ − σ) now equal to the constantA. At
the same time, this condition fixes the values of functionsσi(τ ) (see [4] where it is shown
that σi(τ ) = σi = constant, therefore, we chooseσ1(τ ) = 0 andσ2(τ ) = l).

Further, we will consider the dynamics of a string with masses at the ends on the plane
(x, y), i.e. in the Minkowski space withD = 2. In this case, expansion (1.7) contains only
one space-like vectorbµ, and expression (1.7) takes the form

ψ́
µ
+(τ + σ) =

A

f́ (τ + σ) [aµ + bµf (τ + σ)+ ( 1
2)c

µf 2(τ + σ)]

ψ́
µ
−(τ − σ) =

A

ǵ(τ − σ) [aµ + bµf (τ − σ)+ ( 1
2)c

µg2(τ − σ)]
(1.9)

whereḟ (τ + σ), ġ(τ − σ) are derivatives with respect to arguments.
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2. Boundary equations in terms of invariants of boundary curves

Boundary equations (1.4), whenσi(τ ) = constant,ẋµ(τ, σi) and x́µ(τ, σi) from (1.5) are
substituted into them, and representation (1.9) is taken into account, transform into two
nonlinear equations for the functionsf andg [4]

d

dτ
ln

[
ǵ(τ )

f́ (τ )

]
+ 2

f́ (τ )+ ǵ(τ )
f (τ )− g(τ) =

γ

m1
|A| |f (τ)− g(τ)|√

f́ (τ )ǵ(τ )

d

dτ
ln

[
ǵ(τ − l)
f́ (τ + l)

]
+ 2

f́ (τ + l)+ ǵ(τ − l)
f (τ + l)− g(τ − l) = −

γ

m2
|A| |f (τ + l)− g(τ − l)|√

f́ (τ + l)ǵ(τ − l)

(2.1)

whereas nonzero components of the metric tensor of the string surfaceẋ2(τ, σ ) = −x́2(τ, σ )

are expressed viaf andg as follows

ẋ2(τ, σ ) = A2 [f (τ + σ)− g(τ − σ)]2

4f́ (τ + σ)ǵ(τ − σ) . (2.2)

As it is known [1], expression (2.2) is the general solution to the Liouville equation

∂2 ln(ẋ2(τ, σ ))

∂2τ
− ∂

2 ln(ẋ2(τ, σ ))

∂2σ
= A2

ẋ2(τ, σ )

which in our case is the Gauss equation for the component of metric tensor of the string
minimal surface in the three-dimensional Minkowski spaceE1

2 in the gauge (1.2) and (1.8a).
Geometrically [8, 9], conditions (1.8) mean that the isothermal coordinates (1.2) are at the
same time the asymptotic lines on the string world surface.

From (2.2) we obtain the boundary values for the component of metric tensor
ẋ2(τ, σi)(σi = 0, l)

ẋ2(τ, 0) = A2 [f (τ)− g(τ)]2

4f́ (τ )ǵ(τ )
ẋ2(τ, l) = A2 [f (τ + l)− g(τ − l)]2

4f́ (τ + l)ǵ(τ − l) . (2.3)

Now we calculate the curvatureKi(τ) and torsionκi(τ ) of boundary curves along which
massesmi(i = 1, 2) are moving. To this end we compare boundary equations (1.4) for
xµ(τ, σi) in the accepted gauge

d

dτ

 ẋ
µ

i (τ )√
ẋ2
i (τ )

 = (−1)i+1 γ

mi
x́
µ

i (τ ) (i = 1, 2) (2.4)

with the Frenet–Serret equations [8] for these curves

d

dτ

 ẋ
µ

i (τ )√
ẋ2
i (τ )

 = (−1)i+1Ki(τ)x́
µ

i (τ ) (i = 1, 2) (2.5)

d

dτ
n
µ

i (τ ) = κi(τ )x́µi (τ ) (2.6)

wherexµi (τ ) = xµ(τ, σi), andnµi (τ ) = nµ(τ, σi) is a unit space-like vector of the normal
that in the chosen basisaµ, bµ, cµ is of the form [4]

nµ(τ, σ ) = 2aµ + bµ[f (τ + σ)+ g(τ − σ)] + cµf (τ + σ)g(τ − σ)
f (τ + σ)− g(τ − σ) .

By comparing (2.4) with (2.5) we find that the curvaturesKi(τ) are constant and equal to

Ki(τ) = γ /mi. (2.7)
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Next, projecting (2.6) onto the vectorx́µi (τ ) and considering thatnµ(τ, σ ) is orthogonal to
the vectorsẋµ(τ, σ ) and x́µ(τ, σ ) andn2(τ, σ ) = −1, we obtain

κi(τ ) = (ṅi x́i )

x́2
i (τ )

= (ni ẋ
′
i )

ẋ2
i (τ )

= A

ẋ2
i (τ )

(i = 1, 3). (2.8)

Thus, torsions are determined byẋ2
i (τ ) = ẋ2(τ, σi) and the constantA that is geometrically a

nonzero coefficient of the second quadratic form outside the string two-dimensional surface.
Indeed, by definition [8, 9],

bkl =
(
n
∂2x

∂uk∂ul

)
whereu1 = τ, u2 = σ

b00 = b11 = 1
2[A+(τ + σ)− A−(τ − τ)] b01 = b10 = 1

2[A+(τ + σ)+ A−(τ − τ)].
Therefore, in our gauge we haveb11 = b22 = 0 andb12 = b21 = A.

Let us now turn to the boundary equations for functionsf andg (2.1) which, in terms
of (2.3), allow us to express the differential form of those functions in terms of the constants
A,Ki and the component of metric tensorẋ2(τ, σi) on the boundary curves of the string.
For this purpose, we write the RHS of equations (2.1), in view of (2.3), in terms ofKi and
ẋ2(τ, σi) as follows

γ

m1
A
|f (τ)− g(τ)|√
f́ (τ )ǵ(τ )

= 2K1

√
ẋ2(τ, 0)

γ

m2
A
|f (τ + l)− g(τ − l)|√
f́ (τ + l)ǵ(τ − l)

= 2K2

√
ẋ2(τ, l).

(2.9)

Then from the first expression of (2.9) we express the differencef (τ) − g(τ) via the
derivativesf́ (τ ), ǵ(τ ) and ẋ2(τ, 0); whereas from the second, the differencef (τ + l) −
g(τ − l) through the derivativeśf (τ + l), ǵ(τ − l) and ẋ2(τ, l):

f (τ)− g(τ) = ε[f (τ)− g(τ)] 1

A

√
f́ (τ )ǵ(τ )ẋ2(τ, 0)

f (τ + l)− g(τ − l) = ε[f (τ + l)− g(τ − l)] 1

A

√
f́ (τ + l)ǵ(τ − l)ẋ2(τ, l)

(2.10)

whereε[x] is the sign function:

ε[x] =
{
−1 x < 0

1 x > 0
.

From (2.3) it follows that in view ofẋ2(τ, σ ) > 0 whenmi 6= 0, thenf́ (τ, σ )ǵ(τ, σ ) > 0
throughout. Eliminating the differencef − g from (2.1) by using (2.10), we obtain the
boundary equations containing only the derivatives of functionsf́ , ǵ and

√
ẋ2(τ, σi):

d

dτ
ln

[
ǵ(τ )

f́ (τ )

]
+ Aε1√

ẋ2(τ, 0)

√ f́ (τ )
ǵ(τ )

+
√
ǵ(τ )

f́ (τ )

 = 2K1

√
ẋ2(τ, 0) (2.11a)

d

dτ
ln

[
ǵ(τ − l)
f́ (τ + l)

]
+ Aε2√

ẋ2(τ, l)

√ f́ (τ + l)
ǵ(τ − l) +

√
ǵ(τ − l)
f́ (τ + l)

 = −2K2

√
ẋ2(τ, l) (2.11b)

whereε1 = ε[f́ (τ ){f (τ)− g(τ)}], ε2 = ε[f́ (τ + l){f (τ + l)− g(τ − l)}].
Together with this system of boundary equations, we also consider equalities arising

upon the calculation of the logarithmic derivative of (2.3); in this way, with (2.10), we
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obtain

d

dτ
ln[ǵ(τ )f́ (τ )] − Aε1√

ẋ2(τ, 0)

√ f́ (τ )
ǵ(τ )

−
√
ǵ(τ )

f́ (τ )

 = − d

dτ
ln ẋ2(τ, 0) (2.12a)

d

dτ
ln[ǵ(τ − l)f́ (τ + l)] − Aε2√

ẋ2(τ, l)

√ f́ (τ + l)
ǵ(τ − l) −

√
ǵ(τ − l)
f́ (τ + l)


= − d

dτ
ln ẋ2(τ, l). (2.12b)

The sum and difference of equations (2.11a) and (2.11b) give two equations[
2

d

dτ
+K1

√
ẋ2(τ, 0)− d

dτ
ln
√
ẋ2(τ, 0)

]
1√
ǵ(τ )

= Aε1√
ẋ2(τ, 0)f́ (τ )[

2
d

dτ
−K1

√
ẋ2(τ, 0)− d

dτ
ln
√
ẋ2(τ, 0)

]
1√
f́ (τ )

= − Aε1√
ẋ2(τ, 0)ǵ(τ )

(2.13)

for the first boundary (σ1 = 0). In a similar way, the sum and difference of equations (2.11b)
and (2.12b) of the same systems provide two equations[

2
d

dτ
−K2

√
ẋ2(τ, l)− d

dτ
ln
√
ẋ2(τ, l)

]
1√

ǵ(τ − l) =
Aε2√

ẋ2(τ, l)f́ (τ + l)[
2

d

dτ
+K2

√
ẋ2(τ, l)− d

dτ
ln
√
ẋ2(τ, l)

]
1√

f́ (τ + l)
= − Aε1√

ẋ2(τ, l)ǵ(τ − l)

(2.14)

for the second boundary (σ2 = l).
Now let us derive equations separately for the functionsf (τ) andg(τ) and, respectively,

for f (τ + l) andg(τ − l). This is achieved by eliminating 1/
√
g′(τ ) from (2.13); thus, for

1/
√
f ′(τ ) we obtain

D[f (τ)] = D

[
A

∫ τ

0

dς√
ẋ2(ς, 0)

]
+ AK1

2

(
A

K1ẋ2(τ, 0)
− K1ẋ

2(τ, 0)

A

)
−2K1A

d

dτ

√
ẋ2(τ, 0) (2.15)

where D[y(x)] is the Schwartz derivative defined by

D[y(x)] = −2
√
ý(x)

d2

dx2

(
1√
ý(x)

)
= y ′′′(x)
y ′(x)

− 3

2

(
y ′′(x)
y ′(x)

)2

. (2.16)

Then, removing 1/
√
f ′(τ ) from (2.13) we arrive at the equation for 1/

√
g′(τ )

D[g(τ)] = D

[
A

∫ τ

0

dη√
ẋ2(η, 0)

]
+ AK1

2

(
A

K1ẋ2(τ, 0)
− K1ẋ

2(τ, 0)

A

)
+2K1A

d

dτ

√
ẋ2(τ, 0). (2.17)

The same procedure for system (2.14) results in the equations for 1/
√
f ′(τ + l) and

1/
√
g′(τ − l) for the second boundary (σ2 = l):

D[f (τ + l)] = D

[
A

∫ τ dη√
ẋ2(η, l)

]
+ AK2

2

(
A

K2ẋ2(τ, 0)
− K2ẋ

2(τ, l)

A

)
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+2K2A
d

dτ

√
ẋ2(τ, l) (2.18)

D[g(τ − l)] = D

[
A

∫ τ dη√
ẋ2(η, l)

]
+ AK2

2

(
A

K2ẋ2(τ, l)
− K2ẋ

2(τ, l)

A

)
−2K2A

d

dτ

√
ẋ2(τ, l). (2.19)

From these equations it follows that the functionsf (τ) andg(τ) are defined bẏx2(τ, 0)
in accordance with (2.15) and (2.17); whereasf (τ + l) andg(τ − l), by ẋ2(τ, l) according
to (2.18) and (2.19) since the RHS of these equations contain onlyẋ2(τ, σi) and constants
A,Ki .

For ẋ2(τ, 0) and ẋ2(τ, l) we can obtain equations that connect them with each other by
changing the argumentτ in (2.18) toτ − l; and in (2.19) toτ + l, we find that the LHSs
of equations (2.15) and (2.18), as well as (2.17) and (2.19) coincide. As a result, we arrive
at the two equations

D[f (τ)] = D

[
A

∫ τ dη√
ẋ2(η, 0)

]
+ AK1

2

(
A

K1ẋ2(τ, 0)
− K1ẋ

2(τ, 0)

A

)
−2K1A

d

dτ

√
ẋ2(τ, 0)

= D

[
A

∫ τ−l dη√
ẋ2(η, l)

]
+ AK2

2

(
A

K2ẋ2(τ − l, l) −
K2ẋ

2(τ − l, l)
A

)
+2K2A

d

dτ

√
ẋ2(τ − l, l) (2.20)

D[g(τ)] = D

[
A

∫ τ dη√
ẋ2(η, 0)

]
+ AK1

2

(
A

K1ẋ2(τ, 0)
− K1ẋ

2(τ, 0)

A

)
+2K1A

d

dτ

√
ẋ2(τ, 0)

= D

[
A

∫ τ+l dη√
ẋ2(η, l)

]
+ AK2

2

(
A

K2ẋ2(τ + l, l) −
K2ẋ

2(τ + l, l)
A

)
−2K2A

d

dτ

√
ẋ2(τ + l, l). (2.21)

The second equalities in (2.20) and (2.21) represent just the connection betweenẋ2(τ, 0)
and ẋ2(τ, l).

Further, from (2.15) and (2.17) it follows that the difference of the Schwartz derivatives
of the functionsf (τ) andg(τ) is given by

D[f (τ)] − D[g(τ)] = −4AK1
d

dτ

√
ẋ2(τ, 0) (2.22)

and from (2.18) and (2.19)

D[f (τ + l)] − D[g(τ − l)] = 4AK2
d

dτ

√
ẋ2(τ, l). (2.23)

Eliminating D[g(τ)] from these equations by changingτ to τ + l in equation (2.23) and
then eliminating D[f (τ)] by changingτ to τ − l in equation (2.23), we obtain the equations

D[f (τ + 2l)] − D[f (τ)] = 4A
d

dτ
[K1

√
ẋ2(τ, 0)+K2

√
ẋ2(τ + l, l)]

D[g(τ)] − D[g(τ − 2l)] = 4A
d

dτ
[K1

√
ẋ2(τ, 0)+K2

√
ẋ2(τ − l, l)]

(2.24)
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whose LHSs contain either the functionf or g with shifted arguments, whereas the RHSs
depend on

√
ẋ2(τ, 0) and

√
ẋ2(τ ± l, l). These equations give conserved quantities when

the difference of the Schwarz derivatives on the LHSs are zero under certain conditions of
periodicity to be considered in section 3.

The simplest example of the solution of boundary equations within this approach is the
case of constanṫx2(τ, σi) = ẋ2

0i , i.e. constant torsions of boundary curvesκ(τ, σi) = κ0i

according to (2.8). It is known [5, 8] that curves in a three-dimensional space with a constant
curvatureKi and a constant torsionκ0i are helixes, and the minimal surface within these
boundaries is a helicoid. A detailed solution of the corresponding boundary equations is
presented in [4]; here we briefly outline the derivation of the solution to that problem in the
given approach. From equations (2.22)–(2.24) atẋ2

0i = constant RHSs of these equations
are zero and we obtain the equalities

D[f (τ)] = D[g(τ)] D[f (τ + l)] = D[g(τ − l)]
D[f (τ + 2l)] = D[f (τ)] D[g(τ)] = D[g(τ + 2l)]

from which it follows (see the appendix) that the functions entering into the Schwartz
derivatives are connected with each other by linear-fractional expressions; in particular,
from the first and second equalities it follows that

g(τ) = a1f (τ)+ b1

c1f (τ)+ d1
g(τ − l) = a2f (τ + l)+ b2

c2f (τ + l)+ d2
(2.25)

whereai, bi, ci, di are arbitrary constants such thataidi − bici = 1. From equations (2.20)
and (2.21) we obtain

D[f (τ)] = D[g(τ)] = AK1

2

(
A

K1ẋ
2
01

− K1ẋ
2
01

A

)
= AK2

2

(
A

K2ẋ
2
02

− K2ẋ
2
02

A

)
. (2.26)

Denoting constant quantities equal to each other byω, which according to [7], is the angular
velocity of rotation of a rectilinear string around the centre of rotation, we have the formula

Ki

(
A

Kiẋ
2
0i

− Kiẋ
2
0i

A

)
= ω

from which we can expresṡx2
0i and the torsionκ0i in terms ofω,A,Ki

κ0i = A

ẋ2
0i

= Ki
√( ω

2Ki

)2

+ 1+ ω

2Ki

 . (2.27)

Instead of equations (2.26) that are linear equations of the second order in 1/

√
f́ (τ ) and

1/
√
ǵ(τ ), it is easier to determine the functionsf (τ) and g(τ) from the initial boundary

equations (2.1) since they are equations of the second order inf (τ) and g(τ) and the
ratios of derivativesg′(τ )/f ′(τ ) and g′(τ − l)/f ′(τ + l) are, according to (2.25), equal
to [c1f (τ) + d1]−2 and [c2f (τ + l) + d2]−2, resp., which reduces equations (2.1) to two
equations of the first order whose solution fixes the constantsai, bi, ci, di in terms ofA,Ki
andω. (In [7], the energyE and angular momentumJ have been calculated for such a
rotating rectilinear string with a given angular velocityω and massesmi at the ends.)

3. Constants of motion for boundary equations of a string with periodic torsions of
trajectories of ends

It is a remarkable fact that the system of boundary equations (2.20) and (2.21) possesses
conserved quantities wheṅx2(τ, σi) are periodic with a period multiple ofl : ẋ2(τ, σi) =
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ẋ2(τ + nl, σi), n = 1, 2, 3 . . .; in this case, the torsions of boundary curves will also be
periodic,κi(τ ) = κi(τ + nl).

The RHSs of the above equations depend only onẋ2(τ, σ ), consequently, their LHSs
should be periodic with the same period:

D[f (τ + nl)] = D[f (τ)] D[g(τ + nl)] = D[g(τ)]. (3.1)

In view of the property of the Schwartz derivative (see the appendix) we have

f (τ + nl) = a1f (τ)+ b1

c1f (τ)+ d1
= T1f (τ)

g(τ + nl) = a2g(τ)+ b2

c2g(τ)+ d2
= T2g(τ).

(3.2)

We will prove that these two linear-fractional transformations are to be equal:T1 = T2. To
this end, using (3.2) and (2.3), we write the condition of periodicity forẋ2(τ, σi)

ẋ2(τ, 0) = A2[f (τ)− g(τ)]2

4f́ (τ )ǵ(τ )
= ẋ2(τ + nl, 0) = A2[T1f (τ)− T2g(τ)]2

4(T1f (τ))′(T2f (τ))′

ẋ2(τ, l) = A2[f (τ + l)− g(τ − l)]2

4f́ (τ + l)ǵ(τ − l) = ẋ2(τ + nl, l)

= A2[T1f (τ + l)− T2g(τ − l)]2

4(T1f (τ + l))′(T2f (τ − l))′ .

(3.3)

Since the derivatives of the linear-fractional function are given by the expressions

(T1f (τ))
′ = f ′(τ )

[c1f (τ)+ d1]2
(T2g(τ))

′ = g′(τ )
[c2g(τ)+ d2]2

the denominators in (3.3) coincide, and the numerators obey the equality

[f (τ)− g(τ)] = (a1f (τ)+ b1)(c2g(τ)+ d2)− (c1f (τ)+ d1)(a2g(τ)+ b2)

and the same equality follows from the second equation of (3.3) but with shifted arguments
of f (τ + l) andg(τ − l). These equalities, provided thataidi − bici = 1, hold valid under
the condition

a1 = a2 = a b1 = b2 = b c1 = c2 = c d1 = d2 = d.
Thus, the periodicity condition (3.3) results in thatf andg are transformed as follows

f (τ + nl) = Tf (τ) g(τ + nl) = T g(τ) whereTf (τ) = af (τ)+ b
cf (τ)+ d . (3.4)

Now we can consider each of the periodsl, 2l, . . . , nl separately and consequences that
follow from equations (2.24) in these cases.

For the period l, ẋ2(τ + l, σi) = ẋ2(τ, σi) from equation (3.4) it follows that
f (τ + l) = Tf (τ) and g(τ − l) = T −1g(τ), whereT −1 is the inverse linear-fractional
transformation, and

f (τ + 2l) = T (Tf (τ)) = (a2+ cb)f (τ)+ b(a + d)
c(a + d)f (τ)+ d2+ cb =

[a − (a + d)−1]f (τ)+ b
cf (τ)+ d − (a + d)−1

g(τ − 2l) = T −1(T −1g(τ)) = (d2+ cb)g(τ)− b(a + d)
−c(a + d)g(τ)+ a2+ cb =

[d − (a + d)−1]g(τ)− b
−cg(τ)+ a − (a + d)−1

are also linear-fractional transformations with the determinant equal to unity whenad−bc =
1. Then, the LHS of equations (2.24) are zero because

D[f (τ + 2l)] = D[f (τ)] D[g(τ)] = D[g(τ − 2l)]
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and from (2.24) we obtain the conserved quantity for the motion withẋ2(τ, σi) =
ẋ2(τ + l, σi)

K1

√
ẋ2(τ, 0)+K2

√
ẋ2(τ, l) = h1 (3.5)

whereh1 is the constant of integration.
For equal masses at the string endsm1 = m2,K1 = K2 = γ /m, and if we put

f (τ + l) = g(τ)andg(τ − l) = f (τ), the equalityẋ2(τ, 0) = ẋ2(τ, l) is fulfilled and
the second boundary (2.1) turns into the first one. Then equation (3.5) results in constant
ẋ2(τ, σi) because

K
√
ẋ2(τ, 0) = K

√
ẋ2(τ, l) = h1/2.

Now, let us consider the case with period 2l: ẋ2(τ + 2l, σi) = ẋ2(τ, σi). According to
(3.4), f (τ + 2l) = Tf (τ) andg(τ − 2l) = T −1g(τ), therefore, D[f (τ + 2l)] = D[f (τ)]
and D[g(τ − 2l)] = D[g(τ)], then the LHSs of equations (2.24) again turn out to be zero;
upon integration we obtain

K1

√
ẋ2(τ, 0)+K2

√
ẋ2(τ ± l, l) = h2. (3.6)

This constant of motion for the period 2l differs from (3.5) by the argument in the second
term shifted byl. Therefore, when masses are equal,K1 = K2, and the special case,
ẋ2(τ, 0) = ẋ2(τ, l) = ẋ2(τ ), f (τ + l) = g(τ), is considered, we do not obtain constant
ẋ2(τ, σi) since in this special case (3.6) results in the expression

K
[√
ẋ2(τ )+

√
ẋ2(τ ± l)

]
= h2 (3.7)

which is fulfilled not only for constanṫx2(τ ). The derivation ofẋ2(τ, σ ) and solution of
the whole problem for the period 2l will be done in the next paper.

The case with period 3l is more complicated. For this period, from the first of
equations (2.24), by shifting the argumentτ by l and then by 2l, we obtain the system
of three equations:

D[f (τ + 2l)] − D[f (τ)] = 4A
d

dτ

[
K1

√
ẋ2(τ, 0)+K2

√
ẋ2(τ + l, l)

]
D[f (τ + 3l)] − D[f (τ + l)] = 4A

d

dτ

[
K1

√
ẋ2(τ + l, 0)+K2

√
ẋ2(τ + 2l, l)

]
D[f (τ + 4l)] − D[f (τ + 2l)] = 4A

d

dτ

[
K1

√
ẋ2(τ + 2l, 0)+K2

√
ẋ2(τ + 3l, l)

]
.

(3.8)

Summing these equalities and considering that D[f (τ + 3l)] = D[f (τ)], D[f (τ + 4l)] =
D[f (τ + l)] and ẋ2(τ + 3l, l) = ẋ2(τ, l), we obtain

0= 4A
d

dτ

{
K1

(√
ẋ2(τ, 0)+

√
ẋ2(τ + l, 0)+

√
ẋ2(τ + 2l, 0)

)
+ K2

(√
ẋ2(τ, l)+

√
ẋ2(τ + l, l)+

√
ẋ2(τ + 2l, l)

)}
and upon integration we have

2∑
m=0

[
K1

√
ẋ2(τ +ml, 0)+K2

√
ẋ2(τ +ml, l)

]
= h3. (3.9)

In the same way, from the second of equations (2.24), by shifting the argumentτ by −l,
and then by−2l, we obtain three equations, the sum of which gives

4A
2∑

m=0

d

dτ

[
K1

√
ẋ2(τ −ml, 0)+K2

√
ẋ2(τ −ml, l)

]
= 0. (3.10)
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This expression coincides with (3.9) whenτ is changed toτ + 2l.
From these examples it is not difficult to deduce the general expression for a conserved

quantity for periodnl that is different for even and oddn.
For evenn = 2r(r = 1, 2, . . .), it is necessary, upon adding 2ml to the argumentτ in

equation (2.24), to sum up the obtained expressions overm from zero tor−1, which gives
r−1∑
m=0

D[f (τ + 2(1+m)l)] −
r−1∑
m=0

D[f (τ + 2ml)]

= 4A
r−1∑
m=0

d

dτ

{
K1

√
ẋ2(τ + 2ml, 0)+K2

√
x2(τ + (1+ 2m)l, l)

}
.

The LHS of this equation equals zero since under the change 1+m = m′ in the first sum
we have
r∑

m′=1

D[f (τ + 2m′l)] −
r−1∑
m=0

D[f (τ + 2ml)] = D[f (τ + 2rl)] − D[f (τ)] = 0

and hence the constant quantity is
r−1∑
m=0

{
K1

√
ẋ2(τ + 2ml, 0)+K2

√
x2(τ + l + 2ml, l)

}
= h2r . (3.11)

Whenr = 1, from (3.11) we obtain (3.6) with period 2l.
For oddn = 2r + 1(r = 0, 1, 2, . . .), it is necessary, addingml to the argument in

(2.24), to sum up the equations overm from zero to 2r, then
2r∑
m=0

D[f (τ + 2l +ml)] −
2r∑
m=0

D[f (τ +ml)]

= 4A
2r∑
m=0

d

dτ

{
K1

√
ẋ2(τ +ml, 0)+K2

√
x2(τ + l +ml, l)

}
. (3.12)

Again, the LHS of equation (3.12) is zero since setting 2+m = m′ in the first sum and
considering that(1+ 2k)l is a period, we obtain
2+2r∑
m′=2

D[f (τ +m′l)] −
2r∑
m=0

D[f (τ +ml)] = D[f (τ + (1+ 2r)l)]

−D[f (τ + 2(1+ r)l)] − D[f (τ)] − D[f (τ + l)] = 0.

Consequently, in this case the quantity
2r∑
m=0

{
K1

√
ẋ2(τ +ml, 0)+K2

√
x2(τ +ml, l)

}
= h2r+1 (3.13)

is constant. In (3.13) we considered that the last term in the sum of the second term in
(3.12) equalsẋ2(τ + l + 2rl, l) = ẋ2(τ, l). When r = 0 andr = 1, we obtain (3.5) and
(3.6).

So, (3.11) and (3.13) are constants of motion of the boundary equations of a relativistic
string with masses at ends when masses are moving along the curves with periodic torsion
κi(τ + nl) = κi(τ ) and constant curvatureKi = γ /mi . The curves with constant
curvatures in the Euclidean geometry are called the Bertrand curves [9]; in our case, when
K1 = K2(m1 = m2), two boundary curves along which the massesmi are moving are two
conjugate Bertrand curves, i.e. the centre of curvature of one curve is always on the other
curve.
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4. Conclusion

The constants of motion, (3.11) and (3.13), obtained can be geometrically interpreted as
follows. Since the length of a curveLi between pointsτ2 andτ1 is given by the expression

Li(τ2, τ1) =
∫ τ1

τ2

√
ẋ2(τ, σi) dτ (4.1)

then, integrating (3.11), (3.13) in the interval [τ2, τ1] and expressing the curvatureKi through
the curvature radiusRi : Ri = 1/Ki , we obtain
r−1∑
m=0

[
1

R1
L1(τ1+ 2ml, τ2+ 2ml)+ 1

R2
L2(τ1+ 2ml, τ2+ 2ml)

]
= h2r (τ1− τ2) (4.2)

2r∑
m=0

[
1

R1
L1(τ1+ml, τ2+ml)+ 1

R2
L2(τ1+ml, τ2+ml)

]
= h2r+1(τ1− τ2). (4.3)

From these expressions it is seen that sums of the curves divided by constant radiiRi of
their curvatures grow linearly with the parameterτ as though their element of length were

a constant
√
ẋ2

0i . Consequently, we can set the constanth2r in (3.11) to be equal to

h2r = r
(
K1

√
ẋ2

01+K2

√
ẋ2

02

)
whereas the constanth2r+1 in (3.13) to be equal to

h2r+1 = (2r + 1)

(
K1

√
ẋ2

01+K2

√
ẋ2

02

)
.

In particular, for the periodl in (3.5) r = 0, and for the period 2l in (3.6) r = 1,
therefore,

h1 = h2 = K1

√
ẋ2

01+K2

√
ẋ2

02.

It has been mentioned that the constants
√
ẋ2(τ, σi) arise only when massesmi move

along helixes and thus the sum of lengths along whichmi passes in the case of periodic
motion during the intervals ofτ multiple of l up to nl is equal to the length passed by the
same pointmi as if it was moving along a helix with constantẋ2

01.
In a subsequent paper, we will analyse boundary equations (2.1) for periodicẋ2(τ, σi)

to show how the integrals of motion we have here derived can be applied to find the world
surface of a string wheṅx2(τ, σi) has periodsl and 2l. These solutions are expressed through
elliptic functions and describe motion of the relativistic string that is more complicated than
rotation of the string as a finite straight line, therefore, the string world surfaces for both
periodsl and 2l do not belong to the class of ruled surfaces. A solution of that sort describes
transverse excitations of the string and radial motions of masses. The paper deals with a
string in three-dimensional spaceE1

2, but in 4-dimensional spaceE1
3, where the amount of

unknown functions increases up to four, since according to (1.7) and (1.8b), we have

ψ́
µ
+(τ + σ) =

A√
f́ 2

1 (τ + σ)+ f́ 2
2 (τ + σ)

[
aµ + bµ1 f1(τ + σ)+ bµ2 f2(τ + σ)

+cµ f
2
1 (τ + σ)+ f 2

2 (τ + σ)
2

]
ψ́
µ
−(τ − σ) =

A√
ǵ2

1(τ − σ)+ ǵ2
2(τ − σ)

[
aµ + bµ1 g1(τ − σ)+ bµ2 g2(τ − σ)
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+cµ g
2
1(τ − σ)+ g2

2(τ − σ)
2

]
and instead of the component of the metric tensorẋ2(τ, σ ) in (2.2) we obtain

ẋ2(τ, σ ) = A2

4

[f1(τ + σ)− g1(τ − σ)]2+ [f2(τ + σ)− g2(τ − σ)]2√
[f́ 2

1 (τ + σ)+ f́ 2
2 (τ + σ)][ ǵ2

1(τ − σ)+ ǵ2
2(τ − σ)]

.

Hence, it is seen that this expression is not invariant under linear-fractional substitutions
(3.2) for all the functionsfi andgi , in contrast to three-dimensional space (2.2). Therefore,
when the argumentτ is shifted by a period ofnl, formulae (3.2) are invalid.
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Appendix

An important property of the Schwartz derivative D[f (τ)] defined by

D[f (τ)] = f ′′′(τ )
f ′(τ )

− 3

2

(
f ′′(τ )
f ′(τ )

)2

= −2
√
f ′(τ )

d2

dτ 2

(
1√
f ′(τ )

)
(A.1)

is that it is invariant under linear-fractional transformations of the functionf (τ)

f (τ)→ af (τ)+ b
cf (τ)+ d ad − bc = 1

which is easily proved by using the second form for D[f (τ)] given in (A.1) and considering
that f ′(τ )→ f ′(τ )[cf (τ)+ d]−2.

One more important property of these derivatives consists of the fact that from the
equality of the Schwartz derivatives of two functionsf (τ) and g(τ) it follows that these
functions are connected with each other via a linear-fractional transformation. Indeed, from
D[f (τ)] = D[g(τ)] it follows that√

f ′(τ )
d2

dτ 2

(
1√
f ′(τ )

)
=
√
g′(τ )

d2

dτ 2

(
1√
g′(τ )

)
or, assuming thatf ′(τ ), g′(τ ) 6= 0, we have

0= 1√
g′(τ )

d2

dτ 2

(
1√
f ′(τ )

)
− 1√

f ′(τ )
d2

dτ 2

(
1√
g′(τ )

)
= d

dτ

[
1√
g′(τ )

d

dτ

(
1√
f ′(τ )

)
− 1√

f ′(τ )
d

dτ

(
1√
g′(τ )

)]
.

After integration, we obtain

1√
g′(τ )

d

dτ

(
1√
f ′(τ )

)
− 1√

f ′(τ )
d

dτ

(
1√
g′(τ )

)
= −c. (A.2)

Then multiplying (A.2) byf ′(τ ) we arrive at the total derivative

f ′(τ )√
g′(τ )

d

dτ

(
1√
f ′(τ )

)
−
√
f ′(τ )

d

dτ

(
1√
g′(τ )

)
= − d

dτ

√
f ′(τ )
g′(τ )

= −cf ′(τ ).
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As a result,g′(τ ) = f ′(τ )[cf (τ)+ d]−2, and thus,

g(τ) = af (τ)+ b
cf (τ)+ d wheread − bc = 1.

Note added in proof. Recently similar topics have been considered in a paper by Capovilla and Guven (Capovilla R
and Guven J 1997 Extended objects with edgesPhys. Rev.D 55 2388).
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